Predicting User Reported Drug Side Effects Using a Gated Neural Network

نویسندگان

  • Lahari Poddar
  • Wynne Hsu
  • Mong Li Lee
چکیده

The detection of Adverse Drug Events (ADE) or side effects of different drugs are necessary to minimize potential health risks of patients. Given the prevalence of user reported contents on Twitter and various health forums, recent research has focused on the automatic discovery of potential side effects of drugs from these online platforms. However, it is not clear if these reported side effects are solely due to the drug or there are other confounding factors that influence a patient’s experience of side effects. In this work, we seek to characterize the reported side effects along with their severity for different drugs, based on patients’ past drug evaluations and pre-existing medical conditions. We analyze a large dataset collected from an online health community patientslikeme.com, and observe that there exists a strong correlation between a patient’s existing health condition(s) and the side effects she reports across different drugs. We develop a multi-objective deep neural network architecture with gating mechanism, to predict the possible side effects and their overall severity level for a drug, for a given patient. Experimental results from a real world drug evaluations dataset demonstrate the effectiveness of our approach over state-of-the-art baselines. Furthermore, our adaptation of Mixture of Experts approach imbues the network with added explainability, allowing it to justify its predictions of side effects with respect to the evaluated drug, the patient and her conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting the Hydrate Formation Temperature by a New Correlation and Neural Network

Gas hydrates are a costly problem when they plug oil and gas pipelines. The best way to determine the HFT and pressure is to measure these conditions experimentally for every gas system. Since this is not practical in terms of time and money, correlations are the other alternative tools. There are a small number of correlations for specific gravity method to predict the hydrate formation. As th...

متن کامل

Predicting Force in Single Point Incremental Forming by Using Artificial Neural Network

In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...

متن کامل

Using Artificial Neural Network Modeling in Predicting the Amount of Methyl Violet Dye Absorption by Modified Palm Fiber

Bio-absorbent palm fiber was applied for removal of cationic violet methyl dye from water solution. For this purpose, a solid phase extraction method combined with the artificial neural network (ANN) was used for preconcentration and determination of removal level of violet methyl dye. This method is influenced by factors such as pH, the contact time, the rotation speed, and the adsorbent dosag...

متن کامل

Investigation of Asphaltene Precipitation Using Response Surface Methodology Combined with Artificial Neural Network

The precipitation of asphaltene, one of the components of oil, in reservoirs, transfer lines, and equipment causes many problems. Accordingly, researchers are prompted to determine the factors affecting asphaltene precipitation and methods of avoiding its formation. Predicting precipitation and examining the simultaneous effect of operational variables on asphaltene precipitation are difficult ...

متن کامل

Comparison of Artificial Neural Network Training Algorithms for Predicting the Weight of Kurdi Sheep using Image Processing

Extended Abstract Introduction and Objective: Due to weakness, the occurrence of unwanted errors, the impact of the environment and exposure to natural events, human always make mistakes in their diagnoses of the environment or different topics, so that different people 's perception of a single and unique event may be very different and be diverse. Nowadays, with the development of image proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018